
Introduction

ShashChess is a free UCI chess engine derived from
Stockfish family chess engines.
The goal is to apply Alexander Shashin theory exposed on
the following book :
https://www.amazon.com/Best-Play-Method-Discovering-
Strongest/dp/1936277468
to improve

- base engine strength
- engine's behaviour on the different positions types
(requiring the corresponding algorithm) :
 - Tal
 - Capablanca
 - Petrosian
 - the mixed ones
 * Tal-Capablanca
 * Capablanca-Petrosian
 * Tal-Capablanca-Petrosian

Terms of use

Shashchess is free, and distributed under the **GNU
General Public License** (GPL). Essentially, this

means that you are free to do almost exactly what you
want with the program, including distributing

it among your friends, making it available for download
from your web site, selling it (either by

itself or as part of some bigger software package), or
using it as the starting point for a software

project of your own.

The only real limitation is that whenever you distribute
ShashChess in some way, you must always

Pagina 1 di 22

Introduction

ShashChess is a free UCI chess engine derived from
Stockfish family chess engines.
The goal is to apply Alexander Shashin theory exposed on
the following book :
https://www.amazon.com/Best-Play-Method-Discovering-
Strongest/dp/1936277468
to improve

- base engine strength
- engine's behaviour on the different positions types
(requiring the corresponding algorithm) :
 - Tal
 - Capablanca
 - Petrosian
 - the mixed ones
 * Tal-Capablanca
 * Capablanca-Petrosian
 * Tal-Capablanca-Petrosian

Terms of use

Shashchess is free, and distributed under the **GNU
General Public License** (GPL). Essentially, this

means that you are free to do almost exactly what you
want with the program, including distributing

it among your friends, making it available for download
from your web site, selling it (either by

itself or as part of some bigger software package), or
using it as the starting point for a software

project of your own.

The only real limitation is that whenever you distribute
ShashChess in some way, you must always

https://www.amazon.com/Best-Play-Method-Discovering-
https://www.amazon.com/Best-Play-Method-Discovering-

Pagina 2 di 22

include the full source code, or a pointer to where the
source code can be found. If you make any

changes to the source code, these changes must also be
made available under the GPL.

For full details, read the copy of the GPL found in the
file named _Copying.txt_.

Files

This distribution of ShashChessPro consists of the
following files:

- Readme.md, the file you are currently reading.
- Copying.txt, a text file containing the GNU General
Public License.
- src, a subdirectory containing the full source code,
including a Makefile and the compilation
 scripts makeAll.bat (Windows) and makeAll.sh (Linux).

Uci options

Hash Memory

Hash

_Integer, Default: 16, Min: 1, Max: 131072 MB (64-bit) :
2048 MB (32-bit)_

The amount of memory to use for the hash during search,
specified in MB (megabytes). This
number should be smaller than the amount of physical
memory for your system.
A modern formula to determine it is the following:

(T x S / 100) MB
where
_T = the average move time (in seconds)

Pagina 3 di 22

S = the average node speed of your hardware_
A traditional formula is the following:
(N x F x T) / 512
where
_N = logical threads number
F = clock single processor frequency (MB)
T = the average move time (in seconds)_

Clear Hash

Button to clear the Hash Memory.
If the Never Clear Hash option is enabled, this button
doesn't do anything.

Threads

Integer, Default: 1, Min: 1, Max: 512
The number of threads to use during the search. This
number should be set to the number of cores
(physical+logical) in your CPU.

Ponder (checkbox)

Boolean, Default: True
Also called "Permanent Brain" : whether or not the engine
should analyze when it is the opponent's
turn.

Usually not on the configuration window.

MultiPV

Integer, Default: 1, Min: 1, Max: 500
The number of alternate lines of analysis to display.
Specify 1 to just get the best line. Asking for
more lines slows down the search.
Usually not on the configuration window.

UCI_Chess960 (checkbox)

Pagina 4 di 22

Whether or not ShashChess should play using Chess 960
mode. Usually not on the configuration
window.

Move overhead

Default 30, min 0, max 5000
In ms, the default value seems to be the best on Linux
systems, but must be increased for slow GUI like Fritz.
In general, on Windows system it seems a good value to be
100.

Slow mover

Default 84, min 10, max 1000
 "Time usage percent": how much the engine thinks on a
move. Many engines seem to move faster and the engine is
behind in time clock. With lower values it plays faster,
with higher values slower - of course always within the
time control.

Handicap mode

UCI_LimitStrength

Activate the strength limit by a weaker play in a random
fashion to simulate human blunders.

UCI_Elo

Default 2850, min 1350, max 2850
UCI-protocol compliant version of Strength parameter.
A very refined handicap mode based on the four famous
sovietic chess school levels:
Internally the UCI_Elo value will be converted to a
Strength value according to the following table:

- _beginner: elo < 2000_
- _intermediate: 2000 <= elo < 2200_

Pagina 5 di 22

- _advanced: 2200 <= elo < 2400_
- _expert: elo > 2400_

Every school corresponds to a different evaluation
function, more and more refined.
The UCI_Elo feature is controlled by the chess GUI, and
usually doesn't appear in the configuration
window.

Sygyzy End Game table bases

Download at
[http://olympuschess.com/egtb/sbases](http://olympuschess.
com/egtb/sbases) (by Ronald De Man)

SyzygyPath

The path to the Syzygy endgame tablebases.this defines an
absolute path on your computer to the
tablebase files, also on multiple paths separated with a
semicolon (;) character (Windows), the colon
(:) character (OS X and Windows) character.
The folder(s) containing the Syzygy EGTB files. If
multiple folders are used, separate them by the ;
(semicolon) character.

SygyzyProbeDepth

Integer, Default: 1, Min: 1, Max: 100
The probing tablebases depth (always the root position).
If you don't have a SSD HD,you have to set it to maximize
the depth and kn/s in infinite analysis
and during a time equals to the double of that
corresponding to half RAM size.
Choice a test position with a few pieces on the board
(from 7 to 12). For example:

- Fen: _8/5r2/R7/8/1p5k/p3P3/4K3/8 w -- 0 1_ Solution :
Ra4 (=)
- Fen: _1R6/7k/1P5p/5p2/3K2p1/1r3P1P/8 b - - 1 1_

http://olympuschess.com/egtb/sbases
http://olympuschess.

Pagina 6 di 22

Solution: 1...h5 !! (=)

SygyzyProbeLimit

Integer, Default: 6, Min: 0, Max: 6
How many pieces need to be on the board before ShashChess
begins probing (even at the root).
Current default, obviously, is for 6-man.

Advanced Chess Analyzer

Advanced analysis options, highly recommended for CC play

Full depth threads

Integer, Default: 0, Min: 0, Max: 512
The number of settled threads to use for a full depth
brute force search.
If the number is greater than threads number, all threads
are for full depth brute force search.

Live Book section (thanks to Eman's author Khalid
Omar for windows builds)

Live Book (checkbox)

Boolean, Default: False If activated, the engine uses
the livebook as primary choice.

Live Book URL
The default is the online chessdb
[https://www.chessdb.cn/queryc_en/](https://www.chessdb.cn
/queryc_en/), a wonderful project by noobpwnftw (thanks
to him!)

[https://github.com/noobpwnftw/chessdb](https://github.com
/noobpwnftw/chessdb)
[http://talkchess.com/forum3/viewtopic.php?f=2&t=71764&hil
it=chessdb](http://talkchess.com/forum3/viewtopic.php?f=2&

https://www.chessdb.cn/queryc_en/
https://www.chessdb.cn
https://github.com/noobpwnftw/chessdb
https://github.com
http://talkchess.com/forum3/viewtopic.php?f=2&t=71764&hil
http://talkchess.com/forum3/viewtopic.php?f=2&

Pagina 7 di 22

t=71764&hilit=chessdb)

The private application can also learn from this live db.

Live Book Timeout

Default 5000, min 0, max 10000 Only for bullet games,
use a lower value, for example, 1500.

Live Book Retry

Default 3, min 1, max 100 Max times the engine tries to
contribute (if the corresponding option is activated: see
below) to the live book. If 0, the engine doesn't use the
livebook.

Live Book Diversity

Boolean, Default: False If activated, the engine varies
its play, reducing conversely its strength because
already the live chessdb is very large.

Live Book Contribute

Boolean, Default: False If activated, the engine sends
a move, not in live chessdb, in its queue to be analysed.
In this manner, we have a kind of learning cloud.

Live Book Depth

Default 100, min 1, max 100 Depth of live book moves.

Full depth threads

Default 0, min 0, max 512 The number of threads doing a
full depth analysis (brute force). Useful in analysis of
particular hard positions to limit the strong pruning's
drawbacks.

Opening variety

Pagina 8 di 22

Integer, Default: 0, Min: 0, Max: 40
To play different opening lines from default (0), if not
from book (see below).
Higher variety -> more probable loss of ELO

Persisted learning

Default is Off: no learning algorithm. The other values
are "Standard" and "Self", this last to activate the [Q-
learning](https://youtu.be/qhRNvCVVJaA?list=PLZbbT5o_s2xoW
NVdDudn51XM8lOuZ_Njv), optimized for self play. Some GUIs
don't write the experience file in some game's modes
because the uci protocol is differently implemented

The persisted learning is based on a collection of one or
more positions stored with the following format (similar
to in memory Stockfish Transposition Table):

- _best move_
- _board signature (hash key)_
- _best move depth_
- _best move score_
- _best move performance_ , a new parameter you can
calculate with any learning application supporting this
specification. An example is the private one, kernel of
SaaS part of [ChessProbe](http://www.chessprobe.com) AI
portal. The idea is to calculate it based on pattern
recognition concept. In the portal, you can also exploit
the reports of another NLG (virtual trainer) application
and buy the products in the digishop based on all this.
This open-source part has the performance default. So, it
doesn't use it. Clearly, even if already strong, this
private learning algorithm is a lot stronger as
demostrate here: [Graphical
result](https://github.com/amchess/BrainLearn/tree/master/
tests/6-5.jpg)

This file is loaded in an hashtable at the engine load

https://youtu.be/qhRNvCVVJaA?list=PLZbbT5o_s2xoW
http://www.chessprobe.com)
https://github.com/amchess/BrainLearn/tree/master/

Pagina 9 di 22

and updated each time the engine receive quit or stop uci
command.
When BrainLearn starts a new game or when we have max 8
pieces on the chessboard, the learning is activated and
the hash table updated each time the engine has a best
score
at a depth >= 4 PLIES, according to Stockfish aspiration
window.

At the engine loading, there is an automatic merge to
experience.bin files, if we put the other ones, based on
the following convention:

<fileType><qualityIndex>.bin

where

- _fileType="experience"/"bin"_
- _qualityIndex_ , an integer, incrementally from 0 on
based on the file's quality assigned by the user (0
best quality and so on)

N.B.

Because of disk access, to be effective, the learning
must be made at no bullet time controls (less than 5
minutes/game).

Read only learning

Boolean, Default: False
If activated, the learning file is only read.

Shashin section

Default: no option settled
The engine will determine dynamically the position's type
starting from a "Capablanca/default
positions".
If one or more (mixed algorithms/positions types at the

Pagina 10 di 22

boundaries) of the three following options
are settled, it will force the initial position/algorithm
understanding

Tal

Attack position/algorithm

Capablanca

Strategical algorithm (for quiescent positions)

Petrosian

Defense position/algorithm (the "reversed colors" Tal)

Acknowledgments

- Sergey Aleksandrovitch Kozlov for his very interesting
patch and code on Sugar engine
- Alexei Chernakoff for his pretious suggestions about
the android version and its contribution to it
- Dariusz Domagala for the Mac version
- The BrainFish, McBrain, CorChess, CiChess and
MateFinder authors for their very interesting derivative
- Obviously, the chess theorician Alexander Shashin,
whithout whom I wouldn't had the idea of this engine

Stockfish community

ShashChess team
- engine owner and main developer: ICCF IM Andrea Manzo
(https://www.iccf.com/player?id=241224)
- IM Yohan Benitah for his professional chess
understanding and help in testing against neural networks
- official tester: ICCF CCE and CCM Maurizio Platino
(https://www.iccf.com/player?id=241094)
- official tester: Maurizio Colbacchini, FSI 1N
- official tester and concept analyst: ICCF GM Fabio
Finocchiaro (https://www.iccf.com/player?id=240090), 2012

https://www.iccf.com/player?id=241224)
https://www.iccf.com/player?id=241094)
https://www.iccf.com/player?id=240090),

Pagina 11 di 22

ICCF world champion
- official tester Dennis Marvin (NDL) (overall the online
learning)
- tester and concept analyst: ICCF GM Matjas Pirs
(https://www.iccf.com/player?id=480232), for his great
experience and tests on positions analysis in different
game's phases

Sorry If I forgot someone.

<h1 align="center">Stockfish NNUE</h1>

Overview

[![Build Status](https://travis-ci.org/official-
stockfish/Stockfish.svg?branch=master)](https://travis-
ci.org/official-stockfish/Stockfish)
[![Build
Status](https://ci.appveyor.com/api/projects/status/github
/official-
stockfish/Stockfish?branch=master&svg=true)](https://ci.ap
pveyor.com/project/mcostalba/stockfish/branch/master)

[Stockfish](https://stockfishchess.org) is a free,
powerful UCI chess engine
derived from Glaurung 2.1. It features two evaluation
functions, the classical
evaluation based on handcrafted terms, and the NNUE
evaluation based on
efficiently updateable neural networks. The classical
evaluation runs efficiently
on most 64bit CPU architectures, while the NNUE
evaluation benefits strongly from the
vector intrinsics available on modern CPUs (avx2 or
similar).

Stockfish is not a complete chess program and requires a
UCI-compatible GUI (e.g. XBoard with PolyGlot, Scid, Cute

https://www.iccf.com/player?id=480232),
https://travis-ci.org/official-
https://travis-
https://ci.appveyor.com/api/projects/status/github
https://ci.ap
https://stockfishchess.org)

Pagina 12 di 22

Chess, eboard, Arena,
Sigma Chess, Shredder, Chess Partner or Fritz) in order
to be used comfortably.
Read the documentation for your GUI of choice for
information about how to use
Stockfish with it.

Files

This distribution of Stockfish consists of the following
files:

 * Readme.md, the file you are currently reading.

 * Copying.txt, a text file containing the GNU General
Public License version 3.

 * src, a subdirectory containing the full source code,
including a Makefile
 that can be used to compile Stockfish on Unix-like
systems.

To use the NNUE evaluation an additional data file with
neural network parameters
needs to be downloaded. The filename for the default set
can be found as the default
value of the `EvalFile` UCI option, with the format
`nn-[SHA256 first 12 digits].nnue` (e.g. nn-
c157e0a5755b.nnue). This file can be downloaded from
```
https://tests.stockfishchess.org/api/nn/[filename]
```
replacing `[filename]` as needed.

UCI options

Currently, Stockfish has the following UCI options:

https://tests.stockfishchess.org/api/nn/

Pagina 13 di 22

 * #### Threads
 The number of CPU threads used for searching a
position. For best performance, set
 this equal to the number of CPU cores available.

 * #### Hash
 The size of the hash table in MB. It is recommended
to set Hash after setting Threads.

 * #### Ponder
 Let Stockfish ponder its next move while the opponent
is thinking.

 * #### MultiPV
 Output the N best lines (principal variations, PVs)
when searching.
 Leave at 1 for best performance.

 * #### Use NNUE
 Toggle between the NNUE and classical evaluation
functions. If set to "true",
 the network parameters must be available to load from
file (see also EvalFile).

 * #### EvalFile
 The name of the file of the NNUE evaluation
parameters. Depending on the GUI the
 filename should include the full path to the
folder/directory that contains the file.

 * #### Contempt
 A positive value for contempt favors middle game
positions and avoids draws,
 effective for the classical evaluation only.

 * #### Analysis Contempt
 By default, contempt is set to prefer the side to
move. Set this option to "White"
 or "Black" to analyse with contempt for that side, or
"Off" to disable contempt.

Pagina 14 di 22

 * #### UCI_AnalyseMode
 An option handled by your GUI.

 * #### UCI_Chess960
 An option handled by your GUI. If true, Stockfish
will play Chess960.

 * #### UCI_ShowWDL
 If enabled, show approximate WDL statistics as part
of the engine output.
 These WDL numbers model expected game outcomes for a
given evaluation and
 game ply for engine self-play at fishtest LTC
conditions (60+0.6s per game).

 * #### UCI_LimitStrength
 Enable weaker play aiming for an Elo rating as set by
UCI_Elo. This option overrides Skill Level.

 * #### UCI_Elo
 If enabled by UCI_LimitStrength, aim for an engine
strength of the given Elo.
 This Elo rating has been calibrated at a time control
of 60s+0.6s and anchored to CCRL 40/4.

 * #### Skill Level
 Lower the Skill Level in order to make Stockfish play
weaker (see also UCI_LimitStrength).
 Internally, MultiPV is enabled, and with a certain
probability depending on the Skill Level a
 weaker move will be played.

 * #### SyzygyPath
 Path to the folders/directories storing the Syzygy
tablebase files. Multiple
 directories are to be separated by ";" on Windows and
by ":" on Unix-based
 operating systems. Do not use spaces around the ";"
or ":".

Pagina 15 di 22

 Example:
`C:\tablebases\wdl345;C:\tablebases\wdl6;D:\tablebases\dtz
345;D:\tablebases\dtz6`

 It is recommended to store .rtbw files on an SSD.
There is no loss in storing
 the .rtbz files on a regular HD. It is recommended to
verify all md5 checksums
 of the downloaded tablebase files (`md5sum -c
checksum.md5`) as corruption will
 lead to engine crashes.

 * #### SyzygyProbeDepth
 Minimum remaining search depth for which a position
is probed. Set this option
 to a higher value to probe less agressively if you
experience too much slowdown
 (in terms of nps) due to TB probing.

 * #### Syzygy50MoveRule
 Disable to let fifty-move rule draws detected by
Syzygy tablebase probes count
 as wins or losses. This is useful for ICCF
correspondence games.

 * #### SyzygyProbeLimit
 Limit Syzygy tablebase probing to positions with at
most this many pieces left
 (including kings and pawns).

 * #### Move Overhead
 Assume a time delay of x ms due to network and GUI
overheads. This is useful to
 avoid losses on time in those cases.

 * #### Slow Mover
 Lower values will make Stockfish take less time in
games, higher values will
 make it think longer.

Pagina 16 di 22

 * #### nodestime
 Tells the engine to use nodes searched instead of
wall time to account for
 elapsed time. Useful for engine testing.

 * #### Clear Hash
 Clear the hash table.

 * #### Debug Log File
 Write all communication to and from the engine into a
text file.

Classical and NNUE evaluation

Both approaches assign a value to a position that is used
in alpha-beta (PVS) search
to find the best move. The classical evaluation computes
this value as a function
of various chess concepts, handcrafted by experts, tested
and tuned using fishtest.
The NNUE evaluation computes this value with a neural
network based on basic
inputs (e.g. piece positions only). The network is
optimized and trained
on the evalutions of millions of positions at moderate
search depth.

The NNUE evaluation was first introduced in shogi, and
ported to Stockfish afterward.
It can be evaluated efficiently on CPUs, and exploits the
fact that only parts
of the neural network need to be updated after a typical
chess move.
[The nodchip
repository](https://github.com/nodchip/Stockfish)
provides additional
tools to train and develop the NNUE networks.

On CPUs supporting modern vector instructions (avx2 and

https://github.com/nodchip/Stockfish)

Pagina 17 di 22

similar), the NNUE evaluation
results in stronger playing strength, even if the nodes
per second computed by the engine
is somewhat lower (roughly 60% of nps is typical).

Note that the NNUE evaluation depends on the Stockfish
binary and the network parameter
file (see EvalFile). Not every parameter file is
compatible with a given Stockfish binary.
The default value of the EvalFile UCI option is the name
of a network that is guaranteed
to be compatible with that binary.

What to expect from Syzygybases?

If the engine is searching a position that is not in the
tablebases (e.g.
a position with 8 pieces), it will access the tablebases
during the search.
If the engine reports a very large score (typically
153.xx), this means
that it has found a winning line into a tablebase
position.

If the engine is given a position to search that is in
the tablebases, it
will use the tablebases at the beginning of the search to
preselect all
good moves, i.e. all moves that preserve the win or
preserve the draw while
taking into account the 50-move rule.
It will then perform a search only on those moves. **The
engine will not move
immediately**, unless there is only a single good move.
**The engine likely
will not report a mate score even if the position is
known to be won.**

It is therefore clear that this behaviour is not
identical to what one might

Pagina 18 di 22

be used to with Nalimov tablebases. There are technical
reasons for this
difference, the main technical reason being that Nalimov
tablebases use the
DTM metric (distance-to-mate), while Syzygybases use a
variation of the
DTZ metric (distance-to-zero, zero meaning any move that
resets the 50-move
counter). This special metric is one of the reasons that
Syzygybases are
more compact than Nalimov tablebases, while still storing
all information
needed for optimal play and in addition being able to
take into account
the 50-move rule.

Large Pages

Stockfish supports large pages on Linux and Windows.
Large pages make
the hash access more efficient, improving the engine
speed, especially
on large hash sizes. Typical increases are 5..10% in
terms of nps, but
speed increases up to 30% have been measured. The support
is
automatic. Stockfish attempts to use large pages when
available and
will fall back to regular memory allocation when this is
not the case.

Support on Linux

Large page support on Linux is obtained by the Linux
kernel
transparent huge pages functionality. Typically,
transparent huge pages
are already enabled and no configuration is needed.

Support on Windows

Pagina 19 di 22

The use of large pages requires "Lock Pages in Memory"
privilege. See
[Enable the Lock Pages in Memory Option
(Windows)](https://docs.microsoft.com/en-us/sql/database-
engine/configure-windows/enable-the-lock-pages-in-memory-
option-windows)
on how to enable this privilege. Logout/login may be
needed
afterwards. Due to memory fragmentation, it may not
always be
possible to allocate large pages even when enabled. A
reboot
might alleviate this problem. To determine whether large
pages
are in use, see the engine log.

Compiling Stockfish yourself from the sources

Stockfish has support for 32 or 64-bit CPUs, certain
hardware
instructions, big-endian machines such as Power PC, and
other platforms.

On Unix-like systems, it should be easy to compile
Stockfish
directly from the source code with the included Makefile
in the folder
`src`. In general it is recommended to run `make help` to
see a list of make
targets with corresponding descriptions.

```
    cd src
    make help
    make build ARCH=x86-64-modern
```

When not using the Makefile to compile (for instance with
Microsoft MSVC) you

https://docs.microsoft.com/en-us/sql/database-

Pagina 20 di 22

need to manually set/unset some switches in the compiler
command line; see
file *types.h* for a quick reference.

When reporting an issue or a bug, please tell us which
version and
compiler you used to create your executable. These
informations can
be found by typing the following commands in a console:

```
    ./stockfish
    compiler
```

Understanding the code base and participating in the
project

Stockfish's improvement over the last couple of years has
been a great
community effort. There are a few ways to help contribute
to its growth.

Donating hardware

Improving Stockfish requires a massive amount of testing.
You can donate
your hardware resources by installing the [Fishtest
Worker](https://github.com/glinscott/fishtest/wiki/Running
-the-worker:-overview)
and view the current tests on
[Fishtest](https://tests.stockfishchess.org/tests).

Improving the code

If you want to help improve the code, there are several
valuable resources:

* [In this wiki,](https://www.chessprogramming.org) many
techniques used in

https://github.com/glinscott/fishtest/wiki/Running
https://tests.stockfishchess.org/tests).
https://www.chessprogramming.org)

Pagina 21 di 22

Stockfish are explained with a lot of background
information.

* [The section on
Stockfish](https://www.chessprogramming.org/Stockfish)
describes many features and techniques used by Stockfish.
However, it is
generic rather than being focused on Stockfish's precise
implementation.
Nevertheless, a helpful resource.

* The latest source can always be found on
[GitHub](https://github.com/official-stockfish/Stockfish).
Discussions about Stockfish take place in the
[FishCooking](https://groups.google.com/forum/#!forum/fish
cooking)
group and engine testing is done on
[Fishtest](https://tests.stockfishchess.org/tests).
If you want to help improve Stockfish, please read this
[guideline](https://github.com/glinscott/fishtest/wiki/Cre
ating-my-first-test)
first, where the basics of Stockfish development are
explained.

Terms of use

Stockfish is free, and distributed under the **GNU
General Public License version 3**
(GPL v3). Essentially, this means that you are free to do
almost exactly
what you want with the program, including distributing it
among your
friends, making it available for download from your web
site, selling
it (either by itself or as part of some bigger software
package), or
using it as the starting point for a software project of
your own.

https://www.chessprogramming.org/Stockfish)
https://github.com/official-stockfish/Stockfish).
https://groups.google.com/forum/#!forum/fish
https://tests.stockfishchess.org/tests).
https://github.com/glinscott/fishtest/wiki/Cre

Pagina 22 di 22

The only real limitation is that whenever you distribute
Stockfish in
some way, you must always include the full source code,
or a pointer
to where the source code can be found. If you make any
changes to the
source code, these changes must also be made available
under the GPL.

For full details, read the copy of the GPL v3 found in
the file named
Copying.txt.

