
ShashChess
Introduction
ShashChess is a free UCI chess engine derived from Stockfish family chess engines. The goal is to apply Alexander
Shashin theory exposed on the following book : https://www.amazon.com/Best-Play-Method-Discovering-Stron-
gest/dp/1936277468 to improve

base engine strength
engine's behaviour on the different positions types (requiring the corresponding algorithm) :

Tal
Capablanca
Petrosian
the mixed ones

Tal-Capablanca
Capablanca-Petrosian
Tal-Capablanca-Petrosian

Terms of use
Shashchess is free, and distributed under the GNU General Public License (GPL). Essentially, this
means that you are free to do almost exactly what you want with the program, including distributing
it among your friends, making it available for download from your web site, selling it (either by
itself or as part of some bigger software package), or using it as the starting point for a software
project of your own.
The only real limitation is that whenever you distribute ShashChess in some way, you must always
include the full source code, or a pointer to where the source code can be found. If you make any
changes to the source code, these changes must also be made available under the GPL.
For full details, read the copy of the GPL found in the file named Copying.txt.

Files
This distribution of ShashChessPro consists of the following files:

Readme.md, the file you are currently reading.
Copying.txt, a text file containing the GNU General Public License.
src, a subdirectory containing the full source code, including a Makefile and the compilation scripts makeAll.bat
(Windows) and makeAll.sh (Linux).

Uci options

Hash Memory

Hash

https://www.amazon.com/Best-Play-Method-Discovering-Strongest/dp/1936277468
https://www.amazon.com/Best-Play-Method-Discovering-Strongest/dp/1936277468


Integer, Default: 16, Min: 1, Max: 131072 MB (64-bit) : 2048 MB (32-bit)
The amount of memory to use for the hash during search, specified in MB (megabytes). This number should be smaller
than the amount of physical memory for your system. A modern formula to determine it is the following:
(T x S / 100) MB where T = the average move time (in seconds) S = the average node speed of your hardware A tradi-
tional formula is the following: (N x F x T) / 512 where N = logical threads number F = clock single processor frequen-
cy (MB) T = the average move time (in seconds)

Clear Hash
Button to clear the Hash Memory. If the Never Clear Hash option is enabled, this button doesn't do anything.

Threads
Integer, Default: 1, Min: 1, Max: 512 The number of threads to use during the search. This number should be set to the
number of cores (physical+logical) in your CPU.

Ponder (checkbox)
Boolean, Default: True Also called "Permanent Brain" : whether or not the engine should analyze when it is the oppo-
nent's turn.
Usually not on the configuration window.

MultiPV
Integer, Default: 1, Min: 1, Max: 500 The number of alternate lines of analysis to display. Specify 1 to just get the best
line. Asking for more lines slows down the search. Usually not on the configuration window.

UCI_Chess960 (checkbox)
Whether or not ShashChess should play using Chess 960 mode. Usually not on the configuration window.

Move overhead
Default 30, min 0, max 5000 In ms, the default value seems to be the best on Linux systems, but must be increased for
slow GUI like Fritz. In general, on Windows system it seems a good value to be 100.

Slow mover
Default 84, min 10, max 1000 "Time usage percent": how much the engine thinks on a move. Many engines seem to
move faster and the engine is behind in time clock. With lower values it plays faster, with higher values slower - of
course always within the time control.

Handicap mode



UCI_LimitStrength
Activate the handicap mode and the related following options: in this case, the evaluation function is always the classi-
cal one.

UCI_Elo
Default 2850, min 1350, max 2850 UCI-protocol compliant version of Strength parameter. A very refined handicap mo-
de based on the four famous sovietic chess school levels: Internally the UCI_Elo value will be converted to a Strength
value according to the following table:

beginner: elo < 2000
intermediate: 2000 <= elo < 2200
advanced: 2200 <= elo < 2400
expert: elo > 2400

Every school corresponds to a different evaluation function, more and more refined. The UCI_Elo feature is controlled
by the chess GUI, and usually doesn't appear in the configuration window.

Sygyzy End Game table bases
Download at http://olympuschess.com/egtb/sbases (by Ronald De Man)

SyzygyPath
The path to the Syzygy endgame tablebases.this defines an absolute path on your computer to the tablebase files, also
on multiple paths separated with a semicolon (;) character (Windows), the colon (:) character (OS X and Windows) cha-
racter. The folder(s) containing the Syzygy EGTB files. If multiple folders are used, separate them by the ; (semicolon)
character.

SygyzyProbeDepth
Integer, Default: 1, Min: 1, Max: 100 The probing tablebases depth (always the root position). If you don't have a SSD
HD,you have to set it to maximize the depth and kn/s in infinite analysis and during a time equals to the double of that
corresponding to half RAM size. Choice a test position with a few pieces on the board (from 7 to 12). For example:

Fen: 8/5r2/R7/8/1p5k/p3P3/4K3/8 w -- 0 1 Solution : Ra4 (=)
Fen: 1R6/7k/1P5p/5p2/3K2p1/1r3P1P/8 b - - 1 1 Solution: 1...h5 !! (=)

SygyzyProbeLimit
Integer, Default: 6, Min: 0, Max: 6 How many pieces need to be on the board before ShashChess begins probing (even
at the root). Current default, obviously, is for 6-man.

Advanced Chess Analyzer
Advanced analysis options, highly recommended for CC play

http://olympuschess.com/egtb/sbases


Full depth threads
Integer, Default: 0, Min: 0, Max: 512 The number of settled threads to use for a full depth brute force search. If the
number is greater than threads number, all threads are for full depth brute force search.

MonteCarlo Tree Search section (experimental: thanks to original Ste-
phan Nicolet work)

MCTS
Default is Off: no MonteCarlo Tree Search algorithm. The other values are "Single" and "Multi", where "Single" means
only main thread does MCTS and "Multi" means all threads but main one does MCTS

Multi Strategy
Integer, Default: 20, Min: 0, Max: 100 Only in multi mcts mode, for tree policy.

Multi MinVisits
Integer, Default: 5, Min: 0, Max: 1000 Only in multi mcts mode, for Upper Confidence Bound.

Live Book section (thanks to Eman's author Khalid Omar for windows
builds)

Live Book (checkbox)
Boolean, Default: False If activated, the engine uses the livebook as primary choice.

Live Book URL
The default is the online chessdb https://www.chessdb.cn/queryc_en/, a wonderful project by noobpwnftw (thanks to
him!)
https://github.com/noobpwnftw/chessdb http://talkchess.com/forum3/viewtopic.php?f=2&t=71764&hilit=chessdb
The private application can also learn from this live db.

Live Book Timeout
Default 5000, min 0, max 10000 Only for bullet games, use a lower value, for example, 1500.

Live Book Retry

https://www.chessdb.cn/queryc_en/
https://github.com/noobpwnftw/chessdb
http://talkchess.com/forum3/viewtopic.php?f=2&t=71764&hilit=chessdb


Default 3, min 1, max 100 Max times the engine tries to contribute (if the corresponding option is activated: see below)
to the live book. If 0, the engine doesn't use the livebook.

Live Book Diversity
Boolean, Default: False If activated, the engine varies its play, reducing conversely its strength because already the live
chessdb is very large.

Live Book Contribute
Boolean, Default: False If activated, the engine sends a move, not in live chessdb, in its queue to be analysed. In this
manner, we have a kind of learning cloud.

Live Book Depth
Default 100, min 1, max 100 Depth of live book moves.

Full depth threads
Default 0, min 0, max 512 The number of threads doing a full depth analysis (brute force). Useful in analysis of particu-
lar hard positions to limit the strong pruning's drawbacks.

Opening variety
Integer, Default: 0, Min: 0, Max: 40 To play different opening lines from default (0), if not from book (see below). Hi-
gher variety -> more probable loss of ELO

Concurrent Experience
Boolean, Default: False Set this option to true when running under CuteChess and you experiences problems with con-
currency > 1 When this option is true, the saved experience file name will be modified to something like experience-
64a4c665c57504a4.bin (64a4c665c57504a4 is random). Each concurrent instance of BrainLearn will have its own ex-
perience file name, however, all the concurrent instances will read "experience.bin" at start up.

Use NNUE
Toggle between the NNUE and classical evaluation functions. If set to "true", the network parameters must be available
to load from file (see also EvalFile), if they are not embedded in the binary.

Persisted learning
Default is Off: no learning algorithm. The other values are "Standard" and "Self", this last to activate the Q-learning,
optimized for self play. Some GUIs don't write the experience file in some game's modes because the uci protocol is dif-
ferently implemented

https://youtu.be/qhRNvCVVJaA?list=PLZbbT5o_s2xoWNVdDudn51XM8lOuZ_Njv


The persisted learning is based on a collection of one or more positions stored with the following format (similar to in
memory Stockfish Transposition Table):

best move
board signature (hash key)
best move depth
best move score
best move performance , a new parameter you can calculate with any learning application supporting this specifica-
tion. An example is the private one, kernel of SaaS part of ChessProbe AI portal. The idea is to calculate it based on
pattern recognition concept. In the portal, you can also exploit the reports of another NLG (virtual trainer) applica-
tion and buy the products in the digishop based on all this. This open-source part has the performance default. So, it
doesn't use it. Clearly, even if already strong, this private learning algorithm is a lot stronger as demostrate here:
Graphical result

This file is loaded in an hashtable at the engine load and updated each time the engine receive quit or stop uci com-
mand. When BrainLearn starts a new game or when we have max 8 pieces on the chessboard, the learning is activated
and the hash table updated each time the engine has a best score at a depth >= 4 PLIES, according to Stockfish aspira-
tion window.
At the engine loading, there is an automatic merge to experience.bin files, if we put the other ones, based on the follo-
wing convention:
<fileType><qualityIndex>.bin
where

fileType="experience"/"bin"
qualityIndex , an integer, incrementally from 0 on based on the file's quality assigned by the user (0 best quality and
so on)

N.B.
Because of disk access, to be effective, the learning must be made at no bullet time controls (less than 5 minutes/game).

Read only learning
Boolean, Default: False If activated, the learning file is only read.

Shashin section
Default: no option settled The engine will determine dynamically the position's type starting from a "Capablanca/de-
fault positions". If one or more (mixed algorithms/positions types at the boundaries) of the three following options are
settled, it will force the initial position/algorithm understanding

Tal
Attack position/algorithm

Capablanca
Strategical algorithm (for quiescent positions)

Petrosian
Defense position/algorithm (the "reversed colors" Tal)

http://www.chessprobe.com
https://github.com/amchess/BrainLearn/tree/master/tests/6-5.jpg


Acknowledgments
Sergey Aleksandrovitch Kozlov for his very interesting patch and code on Sugar engine
Omar Khalid for his great experience in microsoft c/cpp programming environment
Alexei Chernakoff for his pretious suggestions about the android version and its contribution to it
Dariusz Domagala for the Mac version
The BrainFish, McBrain, CorChess, CiChess and Crystal authors for their very interesting derivative
Obviously, the chess theorician Alexander Shashin, whithout whom I wouldn't had the idea of this engine

Stockfish community

ShashChess team
engine owner and main developer: ICCF IM Andrea Manzo (https://www.iccf.com/player?id=241224)
IM Yohan Benitah for his professional chess understanding and help in testing against neural networks
official tester: ICCF CCE and CCM Maurizio Platino (https://www.iccf.com/player?id=241094)
official tester: Maurizio Colbacchini, FSI 1N
official tester and concept analyst: ICCF GM Fabio Finocchiaro (https://www.iccf.com/player?id=240090), 2012
ICCF world champion
official tester Dennis Marvin (NDL) (overall the online learning)
tester and concept analyst: ICCF GM Matjas Pirs (https://www.iccf.com/player?id=480232), for his great experience
and tests on positions analysis in different game's phases

Sorry If I forgot someone.

https://www.iccf.com/player?id=241224
https://www.iccf.com/player?id=241094
https://www.iccf.com/player?id=240090
https://www.iccf.com/player?id=480232

